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ELASTOPLASTIC WAVES IN GRANULAR MATERIALS

UDC 539.374O. V. Sadovskaya and V. M. Sadovskii

For a description of the deformation of materials with different resistances to tension and compres-
sion, the conventional rheological diagram is supplemented by a new element — rigid contact. It is
used to construct a model of an ideal granular material possessing elastic and plastic properties. The
loose state of the material is described by the Mises–Schleicher strength conditions, and transition to
the plastic state is described by the Mises yield condition. The model proposed is employed to study
the propagation of longitudinal elastic and plastic compression shock waves. It is shown that one- or
two-wave configurations of discontinuities occur depending on the rate of compression and the degree
of the initial loosening of the material.
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Introduction. The theory of granular materials is an actively developing field of mechanics. Although
one of the first papers on this topic [1] was published almost a hundred years ago, mathematical models of such
materials are far from being completed. At present, there are two classes of models corresponding to two regimes:
the regime of quasistatic deformation and the regime of fast motion. Models of the first class describe the behavior
of closely packed media using the theory of plastic flow with the Coulomb–Mohr or Mises–Schleicher boundary
conditions. Models of the second class treat loose media (ensembles of large numbers of interacting particles) from
the viewpoint of the kinetic theory of gases.

An overview of papers on the mechanics of fast motions of granular materials is given in [2]. For quasistatic
deformation, stress theory in plane, statically definable problems has been developed and has been widely used
in soil mechanics [3]. In such problems, kinematic characteristics are determined from an associated flow law [4].
In [5], a nonassociated law is proposed that provides a more exact description of the velocity field upon intrusion of
a rigid punch in sand. A shortage of these approaches lies in the fact that in rigid unloading, the strain rate tensor
is equal to zero, and, therefore, after loosening, the material cannot be compressed. Thus, the kinematic laws are
applicable only in the case of monotonic loading.

The equations of uniaxial dynamic deformation of an ideal granular material with elastic properties are
studied in [6]. It is shown that along with velocity discontinuities (shock waves), they also describe displacement
discontinuities. In [7], these equations are used to analyze the “dry boiling” process — spontaneous occurrence and
collapse of discontinuities in the bulk of a material. Phenomenological models of a spatial stress-strained state of
cohesive soils are presented in [8, 9].

In the present study, we propose a geometrically linear model for the spatial deformation of an elastoplastic
granular material. This model is employed to study the distribution of longitudinal compression shock waves. The
mechanical parameters of the model are specified differently from [10].

1. Mathematical Model. For a phenomenological description of materials with different resistances to
tension and compression, the conventional rheological diagrams is supplemented by a new element — rigid contact
(Fig. 1a). For compressing stresses, this element is not deformed. For zeroth stress, the strain can be an arbitrary
positive quantity. Tensile stresses are inadmissible. The diagrams in Fig. 1b and c correspond to the models of
elastic and elastoplastic granular media. In compression, such media are in an elastic state or a plastic state, and
in tension, the stresses are equal to zero.

Combining rigid contact with elastic, plastic and viscous elements, one can construct rheological models for
more complicated media.
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Fig. 1. Rheological diagrams of granular materials: (a) rigid
granules; (b) elastic granules; (c) elastoplastic granules.

The present mathematical model of rigid contact (ideal granular material with rigid granules) reduces to the
system of relations

σ 6 0, ε > 0, σε = 0,

where σ is the stress and ε is the strain. According to this model, in uniaxial deformation of the material, only two
states are possible: compression, where σ < 0 and ε = 0, and loosening, where ε > 0 and σ = 0.

The model can also be written as the variational inequalities

σ(ε̃− ε) 6 0, ε > 0, ε̃ > 0, (σ̃ − σ)ε 6 0, σ 6 0, σ̃ 6 0

(σ̃ and ε̃ are arbitrarily varied quantities) each of which admits the potential representation

σ ∈ ∂ϕ(ε), ε ∈ ∂ψ(σ). (1.1)

Here the stress and strain potentials ϕ and ψ are indicator functions, which are equal to zero on the cones
C = {ε > 0} and K = {σ 6 0}, respectively, and are equal to infinity outside these cones. Below, these functions
are denoted by δC(ε) and δK(σ). The symbol ∂ is used to denote the subdifferential

∂ϕ(ε) = {σ | ϕ(ε̃)− ϕ(ε) > σ(ε̃− ε) ∀ ε̃},
which is a set of angular coefficients of linear functions, whose plots pass through the point (ε, ϕ(ε)) and lie below
the plot of the function ϕ.

In the present paper, the use of the notion of a subdifferential, which is a generalization of the notion of a
derivative, is due to the fact that the potentials introduced are not differentiable functions. The same situation is
typical of models of plasticity theory, in which an associated flow law is formulated in terms of subdifferentials [11].
However, unlike in plasticity theory, in the case considered, relations (1.1) represent a nonlinear Hooke’s law and,
thus, describe a nondissipative deformation mechanism.

The rigid contact model is extended to the case of a spatial stress-strained state using inclusions (1.1). For
this, it is necessary to specify a convex cone C in the space of strain tensors or a cone K in the space of stress
tensors. If one of the cones is known, the second is found as the conjugate:

K = {σ | σ : ε 6 0 ∀ ε ∈ C}, C = {ε | σ : ε 6 0 ∀σ ∈ K}
(colon denotes convolution of the tensors). The corresponding potentials (indicator functions of the cones C and
K) are dual; i.e., they are determined from one another by Young’s transformation:

ϕ(ε) = sup
σ
{σ : ε− ψ(σ)}, ψ(σ) = sup

ε
{σ : ε− ϕ(ε)}.

Available experimental data on the deformation properties of hard sands confirm the hypothesis on the
elastic state of the material at stresses close to hydrostatic compression. Such stresses are internal points of the
cone K. For an elastic granular material (Fig. 1b), ψ(σ) = σ : a : σ/2 + δK(σ) (a is the tensor of the elastic
compliance modulus of the fourth rank that corresponds to the model of an elastic element). The constitutive
relations (1.1) are reduced to the Haar and Kármán inequality [1]

(σ̃ − σ) : (a : σ − ε) > 0, σ, σ̃ ∈ K. (1.2)
Taking into account the symmetry and positive definability of the tensor a, it is possible to show that a solution
of inequality (1.2) is the stress tensor σ = sπ that is equal to the projection of the conditional stress tensor s
determined from the linear Hooke’s law a : s = ε onto K along the norm |σ|a =

√
σ : a : σ.

742



We assume that the cone K is specified in the form fi(σ) 6 0 (i = 1, . . . ,m), where fi are convex differentiable
functions. Then, under the Kuhn–Tacker theorem [12], the problem of determining the projection is equivalent to
the problem of determining a Lagrangian saddle point

L(σ, λ) =
1
2
|σ − s|2a +

m∑
i=1

λifi(σ), λi > 0.

In this case, the following system of equations is satisfied:

a : (σ − s) +
m∑
i=1

λi
∂fi(σ)
∂σ

= 0, λifi(σ) = 0. (1.3)

For an elastoplastic granular material (Fig. 1c), the strain tensor is decomposed into a sum of elastic and
plastic components: ε = εe + εp. The elastic strain tensor obeys inequality (1.2), which allows for the possible
loosening of the material. The plastic strain rate tensor satisfies the constitutive relations of flow theory [13]:

σ ∈ ∂η(ε̇p). (1.4)

Here η is the dissipative stress potential which is a positive uniform convex function of strain rates. The potential is
homogenous because the plastic deformation process does not depend on the time scale. By virtue of this property,
the dual potential χ(σ) [Young’s transformation of the function η(ε̇)] is equal to the indicator function of the convex
set

F = {σ | σ : ε̇ 6 η(ε̇) ∀ ε̇}.

The boundary F in the space of stresses is the yield surface of the material.
Relations (1.4) are written in the equivalent form ε̇p ∈ ∂χ(σ), leading to the Mises inequality

(σ̃ − σ) : ε̇p 6 0, σ, σ̃ ∈ F. (1.5)

If the set F is a cylinder with a hydrostatic stress axis, the bulk deformation of the material obeys a linear
elastic law. Otherwise, the model describes irreversible bulk compression of the material. Generally, the set F is
parametrized as gj(σ) 6 0 (j = 1, . . . , n), where gj are differentiable convex functions, and the associated flow law

ε̇p =
n∑
j=1

λj
∂gj(σ)
∂σ

, λjgj(σ) = 0 (λj > 0)

obtained from (1.5) using the Kuhn–Tacker theorem is satisfied.
Inequality (1.2) for εe and inequality (1.5) together with the equations of motion and the kinematic equations

ρv̇ = ∇ · σ, 2ε̇ = ∇v + (∇v)∗

form a closed model that describes the dynamics of a granular material. Here ρ is the density, v is the velocity
vector, and ∇ is the gradient vector; the asterisk denotes transposition of the tensor.

Let us consider an isotropic granular material whose elastic properties are characterized by the bulk com-
pression modulus k and the shear modulus µ. The set F is approximated by a Mises cylinder:

F = {σ | τ(σ) 6 τs}.

Here τ(σ) =
√
σ′ : σ′/2 is the shearing stress rate, the quantity with a prime is the tensor deviator, and τs is the

yield point of the granules. For description of admissible stresses, we use a Mises–Schleicher circular cone

K = {σ | τ(σ) 6 æp(σ)}.

Here p(σ) is the hydrostatic pressure and æ is the internal friction coefficient. Equations (1.3), expressing the stress
tensor σ in terms of the conditional stress tensor s in an elastic material, become

σ′ = s′ − λµσ′/(æp(σ)), p(σ) = p(s) + λæk, λ(τ(σ)− æp(σ)) = 0.

Three cases are therefore possible. If τ(s) 6 æp(s), then σ = s. If τ(s) > æp(s) and µp(s) + ækτ(s) 6 0, then
σ = 0. In this case, the projection s is the vertex of the cone K. If τ(s) > æp(s) and µp(s) + ækτ(s) > 0, the
projection s belongs to the conical surface and is determined from the formulas

σ′ =
æp(σ)
τ(s)

s′, p(σ) =
µp(s) + ækτ(s)

µ+ æ2k
. (1.6)
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Fig. 2. Trajectories of the stresses s and σ.

2. Elastoplastic Waves. We consider a plane longitudinal shock wave propagating in an infinite bulk of
a granular material in the x1 direction of Cartesian coordinates. The wave amplitude is considered small enough.
Then, the following simple dynamic and kinematic compatibility equations are valid at the shock front [14]:

ρc[v1] = −[σ1], c[ε1] = −[v1]. (2.1)

Here c is the wave propagation velocity, v1 is particle mass velocity, and σ1, σ2 = σ3, and ε1 are the nonzero
components of the stress and strain tensors; square brackets denote a jump of the function at the discontinuity. For
closure of system (2.1), it should be supplemented by an equation linking σ1 and ε1. As a result, the shock adiabat
equation [the curve of admissible shock-wave transitions from a fixed state (ε0

1, v
0
1) ahead of the shock front to the

state (ε1, v1) behind the front] takes the form

ρ(v1 − v0
1)2 = (σ1 − σ0

1)(ε1 − ε0
1). (2.2)

The solution of the equation σ1 = σ1(ε1) depends on the sign and nature of the deformation (elastic or elastoplastic
loading and unloading).

Treating ε1 as a parameter, we construct the trajectories of the stresses s(ε1) and σ(ε1) on the plane (σ1, σ3).
The case where the internal friction coefficient is in the range [2µ/(

√
3k),
√

3/2] is considered in [10]. In the present
paper, we examine the more interesting case: æ < 2µ/(

√
3k) and æ 6

√
3/2. The position of the uniaxial elastic

deformation line AB relative to the Mises–Schleicher cone and the Mises cylinder for this case is shown in Fig. 2.
Under axial compression, the material with such characteristics is always in the limiting sate.

For loosening of the material (ε1 > 0), the conditional stresses s1 and s3 are given by

s1 = (k + 4µ/3)ε1, s3 = (k − 2µ/3)ε1, (2.3)

and the true stresses σ1 and σ3 (the projections of conditional stresses onto the cone) are equal to zero. For
compression in the range εB1 6 ε1 6 0, where εB1 = −τs/(æh), the trajectory of conditional stresses is still defined
by Eqs. (2.3) and the true stresses, by virtue of (1.6) have the form

σ1 =
(

1 +
2æ√

3

)
hε1, σ3 =

(
1− æ√

3

)
hε1, h =

1 + 2æ/
√

3
1 + æ2k/µ

k.

Transition to the plastic state corresponds to the point B in Fig. 2. At this point, the material ceases to resist
shear, and additional compaction is required to restore the bearing strength. Such compaction corresponds to the
segment BC under unchanged stresses with a jump of the strain

∆ε1 = εB1 − εC1 =
2/
√

3− æk/µ

1 + 2æ/
√

3
τs
k
,

where εC1 = −τs/(æk). The parametric equations of the straight line BC have the form

s1 =
(
k − 2µ√

3æ

)
ε1 −

2τs√
3

(
1 +

µ

æ2k

)
, s3 =

(
k +

µ√
3æ

)
ε1 +

τs√
3

(
1 +

µ

æ2k

)
.

The interval ε1 < εC1 corresponds to plastic compression (CC ′ ray). In this interval, the stresses σ = s are defined
by the formulas

σ1 = s1 = kε1 − 2τs/
√

3, σ3 = s3 = kε1 + τs/
√

3.
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Fig. 3. Dependence of σ1 on ε1.
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Fig. 4. Shock adiabat for εC1 < ε0
1 < εB1 .

Thus, the trajectory of s(ε1) is the broken line ABCC ′ and the trajectory of σ(ε1) is the broken line OCC ′.
A plot of the function σ1(ε1) is given in Fig. 3.

Let us consider only waves that move in the positive direction of the x1 axis, for which c > 0. Assuming
that v0

1 = 0, we construct the shock adiabats of compression waves (ε1 < ε0
1).

If ahead of the shock front, the material is compressed to a plastic state (ε0
1 6 ε

C
1 ), a plastic shock wave characteristic

of an ordinary elastoplastic material occurs in the material [15]. Equation (2.2) becomes

v1 = −cf (ε1 − ε0
1),

where cf =
√
k/ρ is the velocity of plastic shock waves. On the plane (ε1, v1), the shock adiabat has the form a

ray that issues from the point ε0
1. For εC1 < ε0

1 < εB1 , the shock adiabat is described by the hyperbola equation that
follow from (2.2):

(v1/cf )2 = (ε1 − εC1 )(ε1 − ε0
1). (2.4)

This wave arises only if ε1 < εC1 (Fig. 4). This is a compression wave of the material that lost the bearing strength
at the moment the granules enters a plastic state. Its velocity is evaluated from the formula

c = cf

√
(ε1 − εC1 )/(ε1 − ε0

1). (2.5)

If εB1 6 ε0
1 6 0, then one or two waves (Fig. 5) propagate, depending on the degree of compression. For intense

compression with ε1 < εC1 , a two-wave configuration of discontinuities arises: an elastic precursor in a loose medium
moving at the velocity

cp =
√

(1 + 2æ/
√

3)h/ρ,

and a plastic compression wave, whose velocity is determined from formula (2.5) after replacing ε0
1 by εB1 . The

elastic precursor transforms the material from the state ε0
1 to the limiting elastic state εB1 . Its shock adiabat is

linear. The shock adiabat of the plastic compression wave is obtained by parallel translation of hyperbola (2.4) by
the magnitude vC1 along the v1 axis. For weak compression, where ε1 > εB1 , a plastic compression wave does not
arise. In the interval εC1 6 ε1 < εB1 , the bearing strength of the material behind the elastic precursor front is not
able to restore; therefore, the plastic wave turns into a fixed discontinuity.
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Fig. 7. Shock adiabat for ε0
1 > εA1 .

If the material is loose (ε0
1 > 0) ahead of the shock front, a solitary elastic signoton

(v1/cp)2 = ε1(ε1 − ε0
1) (2.6)

or a two-wave configuration with an elastic precursor signoton (2.6) with a plastic compression wave (2.4) are
possible (Fig. 6). Following the adopted nomenclature [6], a signoton is a shock wave whose passage leads to
an instantaneous change in the sign of deformation. Plots of the shock adiabats (2.6) and (2.4) are branches of
hyperbolas whose asymptotes are inclined to the abscissa at angles arctan cp and arctan cf , respectively. The
asymptote of the first adiabat issues from the point ε0

1/2. The asymptote of the second adiabat issues from the
point that lies in the middle between εC1 and εB1 . Such a pattern is observed only for rather low loosening: ε0

1 6 ε
A
1 .

An excess over the critical value of εA1 = ∆ε1 +εD1 [εD1 = 2τs/(
√

3k)] leads to overturning of the intense compression
waves because the velocity of the precursor signoton becomes lower than cf . For ε0

1 > εA1 (Fig. 7), the shock adiabat
consists of three branches: the adiabat of elastic signotons (2.6), the adiabat of plastic compression waves (2.4),
and the adiabat of plastic signotons

(v1/cf )2 = (ε1 − εD1 )(ε1 − ε0
1).
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The system of waves for a specified value of ε1 is easy to determine from Fig. 3, taking into account that the
quantity ρc2 is equal to the angular coefficient of the secant on the plane (ε1, σ1). From Fig. 3 it follows that for
εB1 6 ε1 < 0, a solitary elastic signoton forms. If ε∗1 < ε1 < εC1 , where

ε∗1 =
ε0

1 + (2æ/
√

3)εB1
ε0

1 − εA1
εC1

is the strain at the point where the ray passing from the initial state to the state B intersects with the plot of
the function σ1(ε1), then the elastic signoton is followed by a plastic compression wave. For strain ε1 = ε∗1, the
velocities of these waves become equal. For ε1 < ε∗1, the shock-wave transition is described by a solitary plastic
signoton.

Unlike in [10], in the present study, we consider a more complex version of specification of material param-
eters, which determines a model in which plastic compression waves form. An even more complex pattern arises
in the case æ >

√
3/2, where the material can render resistance to uniaxial tension, exhibiting elastic and plastic

properties. This case requires an additional investigation.
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